This paper deals with the numerical computation of boundary null controls for the 1D waveequation with a potential. The goal is to compute approximations of controls that drivethe solution from a prescribed initial state to zero at a large enough controllabilitytime. We do not apply in this work the usual duality arguments but explore instead adirect approach in the framework of global Carleman estimates. More precisely, we considerthe control that minimizes over the class of admissible null controls a functionalinvolving weighted integrals of the state and the control. The optimality conditions showthat both the optimal control and the associated state are expressed in terms of a newvariable, the solution of a fourth-order elliptic problem defined in the space-timedomain. We first prove that, for some specific weights determined by the global Carlemaninequalities for the wave equation, this problem is well-posed. Then, in the framework ofthe finite element method, we introduce a family of finite-dimensional approximate controlproblems and we prove a strong convergence result. Numerical experiments confirm theanalysis. We complete our study with several comments.