The aim of the present research was to study if the β-blocker propranolol, which is known to increase bone mass, could reverse the adverse skeletal effects of mild chronic food restriction in weanling rats. Male Wistar rats were divided into four groups: control, control+propranolol (CP), nutritional growth retardation (NGR) and nutritional growth retardation+propranolol (NGRP). Control and CP rats were fed freely with the standard diet. NGR and NGRP rats received, for 4 weeks, 80 % of the amount of food consumed by the control and CP rats, respectively. Results were expressed as mean values and sem. Food restriction induced detrimental effects on body and femur weight and length (P < 0·05) and bone structural and geometrical properties (P < 0·001), confirming results previously shown in our laboratory. However, the β-blocker overcame the deleterious effect of nutritional stress on load-bearing capacity, yielding load, bone stiffness, cross-sectional cortical bone area and second moment of inertia of the cross-section in relation to the horizontal axis without affecting anthropometric, histomorphometric and bone morphometric parameters. The results suggest that propranolol administration to mildly chronically undernourished rats markedly attenuates the impaired bone status in this animal model of growth retardation.