The cationic surfactant cetyltrimetylammonium bromide was used to synthesize mesostructured γ–Al2O3. The effects of the surfactant concentration and of the sol aging (at 95 °C for 24 h) were studied by x-ray powder diffraction, nuclear magnetic resonance, transmission electron microscopy, and analysis of the low-temperature nitrogen adsorption-desorption isotherms. Mesostructured alumina with wormhole morphology and amorphous walls was obtained through the precipitation by ammonium hydroxide of a 0.1 M aluminum nitrate aqueous solution in presence of 0.1 M surfactant. The pore size was smaller than 5 nm. After digesting the milky suspension under atmospheric pressure at 95 °C, a crystallized boehmite-surfactant phase, with fiber morphology, is formed which at 550 and 700 °C is transformed into a highly porous γ−Al2O3. A similar evolution was observed using 0.01 M CTAB solution and aging. Pore volume up to 1.1 cm3/g and pore size up to 16 nm were obtained. Without surfactant, the same aging treatment led to aggregated fibers: the pore size is less than 8 nm and the pore volume is smaller than 0.6 cm3/g. The γ-alumina surface area is determined mainly by the organization generated by the surfactant and to a lesser extent by the boehmite precursor particle size. From the point of view of catalyst preparation, the surfactant at the concentration of 0.01 M in 0.1 M aluminum nitrate and the aging treatment in solution play a beneficial role.