Electroporation has become a powerful technological platform for the electromanipulation of cells and tissues for various medical and biotechnological applications. Recently, nanoporation based on nanosecond pulsed electric fields (nsPEFs) has gained great attention due to its potential to permeabilize the membrane of small vesicles. Here, the authors propose and characterize, both experimentally and through multiphysics modeling, a grounded coplanar waveguide compliant with the wideband requirements for nanosecond pulses to be used for experiments of drug delivery with liposomes activated by nsPEFs.