Consider a queueing network with batch services at each node. The service time of a batch is exponential and the batch size at each node is arbitrarily distributed. At a service completion the entire batch coalesces into a single unit, and it either leaves the system or goes to another node according to given routing probabilities. When the batch sizes are identical to one, the network reduces to a classical Jackson network. Our main result is that this network possesses a product form solution with a special type of traffic equations which depend on the batch size distribution at each node. The product form solution satisfies a particular type of partial balance equation. The result is further generalized to the non-ergodic case. For this case the bottleneck nodes and the maximal subnetwork that achieves steady state are determined. The existence of a unique solution is shown and stability conditions are established. Our results can be used, for example, in the analysis of production systems with assembly and subassembly processes.