Consider a finite irreducible aperiodic Markov chain with nearly-completely decomposable stochastic matrix: i.e. a Markov chain for which the states can be grouped into disjoint aggregates, in such a way that the probabilities of transition between states of the same aggregate are large compared to the probabilities of transition between states belonging to different aggregates. Let Ω be a subset of one of the aggregates. Second-order approximations are determined for the first and second moments of the time to reach Ω and the return time to Ω.