Semiconductor photocatalysis has been regarded as one of the most promising methods for treatment of Cr(VI)-containing wastewater, but the high recombination rate of photogenerated carriers and photocorrosion have limited severely its practical application. The objective of the current study was to employ a layered double hydroxide (LDH) to mitigate these problems by designing and constructing a multiple heterojunction system of g-C3N4/LDH/Ag3PO4 (CNLDHAP) through a two-step hydrothermal route. The structures, morphologies, chemical states, and optical properties of the products were investigated systematically. The CNLDHAP composite showed superior photocatalytic activity for Cr(VI) reduction than that of the individual components under visible-light irradiation. The composite exhibited high photocatalytic reduction stability after five recycles. The enhanced photocatalytic performance may originate from the very efficient separation of photogenerated carriers of the multiple heterojunction system. Possible photocatalytic mechanisms for the reduction of Cr(VI) over the CNLDHAP composite photocatalyst are proposed.