In this paper we are concerned with questions of multiplicity and concentration behaviorof positive solutions of the elliptic problem
$$ (P_{\var})\hspace*{4cm} \left\{ \begin{array}{rcl} \mathcal{L}_{\var}u=f(u) \ \ \mbox{in} \ \ \R^{3},\\[1.5mm] u>0 \ \ \mbox{in} \ \ \R^{3},\\[1.5mm] u \in H^{1}(\R^3), \end{array} \right. $$
where ε is a small positiveparameter, f : ℝ → ℝ is a continuous function, $$ \mathcal{L}_{\var} $$ is a nonlocaloperator defined by
$$ \mathcal{L}_{\var}u=M\left(\dis\frac{1}{\var}\int_{\R^{3}}|\nabla u|^{2}+\frac{1}{\var^{3}}\dis\int_{\R^{3}}V(x)u^{2}\right)\left[-\var^{2}\Delta u + V(x)u \right], $$
M : IR+ → IR+ andV : IR3 → IR are continuous functions whichverify some hypotheses.