The cathodic electrodeposition of molybdenum oxide thin films prepared from aqueous solutions containing iso-polymolybdates and peroxo-polymolybdates is described. Chronocoulometry, x-ray photoelectron spectroscopy, spectroelectrochemistry, and electrochemical quartz crystal microgravimetry were used to establish corresponding reaction mechanisms for films grown at different deposition potentials. Electrodeposition from acidified iso-polymolybdate solutions proceeds by the reduction of molybdic acid, whereas deposition from aqueous peroxo-based solutions involves the graded reduction of several solution components, primarily comprising molybdic acid and peroxo-polymolybdates. Careful regulation of the deposition potential allows for controlled growth of distinct molybdenum oxide compositions producing films with varied water content and valency.