The flexible microactuator (FMA) is a novel pneumaticrubber actuator developed for use in microrobots. Thispaper reports on integrated FMA systems to achievedistributed motion as occurs in intestinal villi, and withmulti-legged arthropods such as centipedes.
For the purpose of miniaturization and integration of FMAs, the authors focussed on two technical issues: A new fabrication process based on stereo lithography and a new FMA design called a restraint beam FMA. Stereo lithography enables fabrication of micro-structures with rubber-like materials suitable for integrated FMAs. The restraint beam FMA makes it possible to fabricate FMAs from a single material, allowing stereo lithography to be used.
As examples of integrated FMA systems, four prototypes are shown: a 5 × 5 FMA array, a 3 × 3 FMA array which has pneumatic circuits at its base, a pipe interior mobile robot, and an amusement system consisting of 30 FMAs, which demonstrates ball handling ability.