The morphology, dehydroxylation, and dissolution properties of single- and multi-metal (Cr, Zn, Cd, and Pb)-substituted goethites prepared using hydrothermal methods are reported. The crystal morphology varied with the nature and the number of metals present in the system. The presence of Cr produced broader crystals while Zn, Cd, and Pb produced narrower crystals than pure goethite. The presence of multiple metals retards the crystal growth of the mineral. Metal substitution caused changes in the unit-cell parameters and the infrared (IR) spectra of the samples. The IR spectra were also sensitive to the morphology of the crystals. The separation of γO and δOH bending frequencies increased with increase in area and aspect ratio of the (100) crystal face. The dissolution-kinetics studies (1 M HCl, 40ºC) of single-metal-substituted goethite provided the following dissolution rate order: Zn- > Pb(II)- ≥ Pb(IV)- > unsubstituted > Cd- > Cr-goethite. More complex results were obtained for the multi-metal-substituted samples. In the di-metal-substituted goethites, incorporation of Cr suppressed the dissolution rate of Zn-substituted goethite by 85% and Cd suppressed the dissolution rate of Zn-substituted goethite by 53%. Similarly, incorporated Cr and Cd suppressed the dissolution rate of Pb(II)-substituted goethite by 50%. The dissolution rates of multi-metal-substituted goethite were linearly related to the steric strains derived from the lattice parameters of the mineral. Dissolution studies also showed that Cr, Zn, Cd, and Pb(IV) were distributed homogeneously throughout goethite crystals while Pb(II) was enriched in the near-surface regions of the crystals. Incorporation of Cr and Pb(II) increased, while Zn and Pb(IV) decreased the dehydroxylation temperature of single-metal-substituted goethites. Incorporation of Zn suppressed the effect of Cr on the dehydroxylation temperature in multi-metal-substituted goethites.