Animal studies have demonstrated that altering the maternal diet during pregnancy affects offspring disease risk. Data from human subjects on the early-life determinants of disease have been derived primarily from birth-weight associations; studies of the impact of the maternal diet are scarce and inconsistent. Investigating CVD risk factors in the offspring of women who have participated in maternal supplementation trials provides a useful resource in this research field, by virtue of employing an experimental design (as compared with observational studies). To date, follow-up studies have been published only for a small number of trials; these trials include the impact of maternal protein–energy, multiple-micronutrient and Ca supplementation on offspring disease risk. In Nepal maternal micronutrient supplementation has been shown to be associated with lower offspring systolic blood pressure at 2 years of age. Data from Guatemala on a pre- and postnatal protein–energy community intervention have suggested long-term improvements in fasting glucose and body composition but not in blood pressure. In The Gambia no association has been found between prenatal protein–energy supplementation and markers of CVD risk including body composition, blood pressure and fasting glucose and insulin in childhood and adolescence. Little evidence of an effect of maternal Ca supplementation on offspring blood pressure has been demonstrated in four trials, although the risk of high systolic blood pressure was found to be reduced in one trial. The present paper reviews the current evidence relating maternal nutritional supplementation during pregnancy to offspring CVD risk and explores the potential explanations for the lack of association.