The Nested Binomial Model presented in this paper is a new approach to modelling mortality and survival in humans and other species that seeks to reconcile individual life course risk trajectories and those population mortality patterns that arise from inter-individual heterogeneity. In describing individual trajectories it partitions mortality risk into two main elements: ‘redundancy’ and ‘interactive risk'. Interactive risk is volatile, increasing or decreasing with time and circumstance, while redundancy is a quantity which declines in a linear and largely invariable fashion throughout life. Although a biological correlate for redundancy is not identified, this assumption allows strikingly realistic modelling of mortality and survival curves, late-life mortality deceleration, Strehler-Mildvan correlation, mortality plateaux and slowing of mortality. Simple assumptions with regard to heterogeneity of parameters within the model allow close approximation to the entire human mortality curve, and provide a rationale for observed and otherwise paradoxical population mortality phenomena. As such, it fulfils biodemographic criteria for a comprehensive theory of ageing. Future challenges are to reconcile its theoretical structure with empirical findings in the biology of ageing and to render it in a form that can become a usable actuarial tool.