Moment recursion relations have previously been derived for the stationary probability density functions of continuous-time stochastic systems with Wiener (white noise) input. These results are extended in this paper to the case of Poisson (shot noise) input. The non-linear dynamical systems are expressed, in general, as stochastic differential equations, with an independent increment input. The transition probability density function evolves according to the appropriate Kolmogorov equation. Moments of the stationary density are obtained from the Fourier transform of the stationary density. The moment relations can be used to estimate the parameters of linear and non-linear stochastic systems from empirical moments, given either Wiener or Poisson input.