We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A brief introduction based on several classical examples to the correspondence between positive-definite kernels and Hilbert spaces of functions is tuned around the Christoffel-Darboux kernel and its relevance to moment problems.
This work is devoted to analyze a numerical scheme for the approximation of the linear heat equation’s controls. It is known that, due to the regularizing effect, the efficient computation of the null controls for parabolic type equations is a difficult problem. A possible cure for the bad numerical behavior of the approximating controls consists of adding a singular perturbation depending on a small parameter ε which transforms the heat equation into a wave equation. A space discretization of step h leads us to a system of ordinary differential equations. The aim of this paper is to show that there exists a sequence of exact controls of the corresponding perturbed semi-discrete systems which converges to a control of the original heat equation when both h (the mesh size) and ε (the perturbation parameter) tend to zero.
We consider representations of a joint distribution law of a family of categorical randomvariables (i.e., a multivariate categorical variable) as a mixture ofindependent distribution laws (i.e. distribution laws according to whichrandom variables are mutually independent). For infinite families of random variables, wedescribe a class of mixtures with identifiable mixing measure. This class is interestingfrom a practical point of view as well, as its structure clarifies principles of selectinga “good” finite family of random variables to be used in applied research. For finitefamilies of random variables, the mixing measure is never identifiable; however, it alwayspossesses a number of identifiable invariants, which provide substantial informationregarding the distribution under consideration.
The aim of this paper is to answer the question: Do the controls of a vanishing viscosity
approximation of the one dimensional linear wave equation converge to a control of the
conservative limit equation? The characteristic of our viscous term is that it contains
the fractional power α of the Dirichlet Laplace operator. Through the
parameter α we may increase or decrease the strength of the high
frequencies damping which allows us to cover a large class of dissipative mechanisms. The
viscous term, being multiplied by a small parameter ε devoted to tend to
zero, vanishes in the limit. Our analysis, based on moment problems and biorthogonal
sequences, enables us to evaluate the magnitude of the controls needed for each eigenmode
and to show their uniform boundedness with respect to ε, under the
assumption that α∈[0,1)\{½}. It follows that, under this assumption, our starting
question has a positive answer.
A number of approaches for discretizing partial differential equations with random dataare based on generalized polynomial chaos expansions of random variables. These constitutegeneralizations of the polynomial chaos expansions introduced by Norbert Wiener toexpansions in polynomials orthogonal with respect to non-Gaussian probability measures. Wepresent conditions on such measures which imply mean-square convergence of generalizedpolynomial chaos expansions to the correct limit and complement these with illustrativeexamples.
This article considers the linear 1-d Schrödinger equation in (0,π)
perturbed by a vanishing viscosity term depending on a small parameter
ε > 0. We study the boundary controllability properties of this
perturbed equation and the behavior of its boundary controls
vε as ε goes to zero. It
is shown that, for any time T sufficiently large but independent of
ε and for each initial datum in
H−1(0,π), there exists a uniformly bounded
family of controls
(vε)ε in
L2(0, T) acting on the extremity
x = π. Any weak limit of this family is a control for
the Schrödinger equation.
We study controllability for a nonhomogeneous string and ring under an axial stretchingtension that varies with time. We consider the boundary control for a string anddistributed control for a ring. For a string, we are looking for a controlf(t) ∈ L2(0,T) that drives the state solution to rest. We show that for a ring, two forcesare required to achieve controllability. The controllability problem is reduced to amoment problem for the control. We describe the set of initial data which may be driven torest by the control. The proof is based on an auxiliary basis property result.
We prove convergence of diagonal multipoint Padé approximants of Stieltjes-type functions when a certain moment problem is determinate. This is used for the study of the convergence of Fourier–Padé and nonlinear Fourier–Padé approximants for such type of functions.
In this paper, we describe a class of Wiener functionals that are ‘indeterminate by their moments’, that is, whose distributions are not uniquely determined by their moments. In particular, it is proved that the integral of a geometric Brownian motion is indeterminate by its moments and, moreover, shown that previous proofs of this result are incorrect. The main result of this paper is based on geometric inequalities in Gauss space and on a generalization of the Krein criterion due to H. L. Pedersen.
Suppose that {Xs, 0 ≤ s ≤ T} is an m-dimensional geometric Brownian motion with drift, μ is a bounded positive Borel measure on [0,T], and ϕ : ℝm → [0,∞) is a (weighted) lq(ℝm)-norm, 1 ≤ q ≤ ∞. The purpose of this paper is to study the distribution and the moments of the random variable Y given by the Lp(μ)-norm, 1 ≤ p ≤ ∞, of the function s ↦ ϕ(Xs), 0 ≤ s ≤ T. By using various geometric inequalities in Wiener space, this paper gives upper and lower bounds for the distribution function of Y and proves that the distribution function is log-concave and absolutely continuous on every open subset of the distribution's support. Moreover, the paper derives tail probabilities, presents sharp moment inequalities, and shows that Y is indetermined by its moments. The paper will also discuss the so-called moment-matching method for the pricing of Asian-styled basket options.
A recent paper by Lin and Stoyanov is devoted to the moment problem for geometrically compounded sums. The aim of this note is to provide affirmative answers to their conjectures.
An important question in the study of moment problems is to determine when a fixed point in ℝn lies in the moment cone of vectors , with μ a nonnegative measure. In associated optimization problems it is also important to be able to distinguish between the interior and boundary of the moment cone. Recent work of Dachuna-Castelle, Gamboa and Gassiat derived elegant computational characterizations for these problems, and for related questions with an upper bound on μ. Their technique involves a probabilistic interpretation and large deviations theory. In this paper a purely convex analytic approach is used, giving a more direct understanding of the underlying duality, and allowing the relaxation of their assumptions.
It is proved that for a Poisson process there exists a one-to-one relation between the distribution of the random variable N(Y) and the distribution of the non-negative random variable Y. This relation is used to characterize the gamma distribution by the negative binomial distribution. Furthermore it is applied to obtain some characterizations of the exponential distribution.
The problem of approximating an arbitrary probability generating function (p.g.f.) by a polynomial is considered. It is shown that if the coefficients rj are chosen so that LN(·) agrees with g(·) to k derivatives at s = 1 and to (N – k) derivatives at s = 0, then LN is in fact an upper or lower bound to g; the nature of the bound depends only on k and not on N. Application of the results to the problems of finding bounds for extinction probabilities, extinction time distributions and moments of branching process distributions are examined.
Necessary and sufficient conditions are found for a triangular array (finite or infinite) to be expected values of order statistics. The conditions are a wellknown recurrence relation, and a moment condition.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.