This paper presents the bit efficiency of 28 GHz digital beamforming in over-the-air (OTA) measurements and simulations for distributed massive multiple-input–multiple-output (D-MIMO) and collocated massive multiple-input–multiple-output (C-MIMO) systems, as well as simulations for a 3.75 GHz small-cell scenario. Under the condition that users are randomly located in the line of sight coverage indoor area and spatially selected from each other by the normalized zero-forcing method, the OTA measured D-MIMO system exhibits an average of 4–7 dB better signal-to-noise ratio compared to C-MIMO when the number of simultaneously connected users “K” approaches the number of transceivers “M.” This means that the D-MIMO system provides higher bit efficiency than the C-MIMO system when K/M is large. Furthermore, the D-MIMO 3.75 GHz simulation predicts a relatively approximate 30% higher maximum efficiency than C-MIMO due to the shorter average distances between user equipment and access points in the D-MIMO system. To the best of the author’s knowledge, an earlier version of this paper has been presented at the 53rd European Microwave Conference as a first report on the 28 GHz OTA measured bit efficiency between C-MIMO and D-MIMO, highlighting D-MIMO’s advantage.