We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Photon transduction is a fundamental process of any optical detector or image sensor where the basic task is to estimate an average quantity of photons versus time and/or space. We start from basic physical phenomena of the optical transduction considering photon flux as an average quantity, disregarding the quantum mechanics characteristics of a single photon. Then, we investigate the role of noise in the transduction process to better assess design rules in electronic design of interfaces. As in the other transduction chapters, we treat only a very small part of existing optical sensor implementations to serve as examples of the application of the transduction principle.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.