The aim of the present study was to test whether the dietary non-essential/conditionally essential amino acid composition has an effect on growth and protein utilisation and on δ13C of individual amino acids in rainbow trout (Oncorhynchus mykiss). Trout were reared on six purified diets containing only synthetic amino acids in place of protein. Diet 1 mimicked the amino acid composition of fishmeal, in diet 2, cysteine (Cys), glycine (Gly), proline (Pro) and tyrosine (Tyr) were isonitrogenously replaced by their precursor amino acids serine (Ser), glutamic acid (Glu) and phenylalanine (Phe), and in diet 3, alanine (Ala), asparagine and aspartate, Cys, Gly, Pro, Ser and Tyr were isonitrogenously replaced by Glu. Diets 4, 5 and 6 resembled diets 1, 2 and 3 except that Glu contained 0·1 % 13C-enriched Glu. A control group was reared on a fishmeal-based diet. A total of forty-two trout (4·7 (sd 0·57) g) were fed one of the diets at a level of 3·5 % body mass for 10 weeks in a flow-through system. Dietary non-essential amino acid composition significantly influenced protein gain (P < 0·025) and δ13C of Ala, arginine (Arg), Gly, histidine (His), Phe and Tyr. Non-enriched Glu was predominantly found in trout fed 13C-enriched Glu, which is consistent with the fact that Glu has been shown to be used extensively in the gut as an energy source but is less consistent with the enrichment of Pro in fish fed diet 6 compared with fish fed diet 3. Further research is required to better understand the mechanisms that lead to the alteration of amino acid δ13C between diet and body tissues.