We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 6 deals with 2-D laminar boundary-layer instabilities and their control. It covers the full range of Mach numbers from incompressible to hypersonic. Boundary-layer instabilities leading to turbulence onset is of great practical importance. This chapter reviews methods of analysis of boundary-layer stability and illustrates several linear and nonlinear mechanisms that can play a role in the breakdown to turbulence. Such understanding is intrinsic to the methods of boundary-layer instability control that are presented in the chapter. Both passive and active flow control approaches are presented.
In numerical linear stability investigations, the rates of change of the kinetic and thermal energy of the perturbation flow are often used to identify the dominant mechanisms by which kinetic or thermal energy is exchanged between the basic and the perturbation flow. Extending the conventional energy analysis for a single-phase Boussinesq fluid, the energy budgets of arbitrary infinitesimal perturbations to the basic two-phase liquid–gas flow are derived for an axisymmetric thermocapillary bridge when the material parameters in both phases depend on the temperature. This allows identifying individual transport terms and assessing their contributions to the instability if the basic flow and the critical mode are evaluated at criticality. The full closed-form energy budgets of linear modes have been derived for thermocapillary two-phase flow taking into account the temperature dependence of all thermophysical parameters. The influence of different approximations to the temperature dependence on the linear stability boundary of the axisymmetric flow in thermocapillary liquid bridges is tested regarding their accuracy. The general mechanism of symmetry breaking turns out to be very robust.
In this paper, we derive and analyse mean-field models for the dynamics of groups of individuals undergoing a random walk. The random motion of individuals is only influenced by the perceived densities of the different groups present as well as the available space. All individuals have the tendency to stay within their own group and avoid the others. These interactions lead to the formation of aggregates in case of a single species and to segregation in the case of multiple species. We derive two different mean-field models, which are based on these interactions and weigh local and non-local effects differently. We discuss existence and stability properties of solutions for both models and illustrate the rich dynamics with numerical simulations.
The linear stability boundaries of journal bearings lubricated with a non-Newtonian fluid have been investigated in this paper. Based on the Rabinowitsch fluid model, a non-Newtonian dynamic Reynolds equation for journal bearings is derived and then applied to analyze the linear dynamic characteristics of short journal bearings. Comparing with the Newtonian-lubricant case, the non-Newtonian rheology of dilatant lubricants provides a larger area of linearly stable region. However, the non-Newtonian properties of pseudo-plastic lubricants results in a reverse trend for the short journal bearing.
Grad's moment models for Boltzmann equation were recently regularized to globally hyperbolic systems and thus the regularized models attain local well-posedness for Cauchy data. The hyperbolic regularization is only related to the convection term in Boltzmann equation. We in this paper studied the regularized models with the presentation of collision terms. It is proved that the regularized models are linearly stable at the local equilibrium and satisfy Yong's first stability condition with commonly used approximate collision terms, and particularly with Boltzmann's binary collision model.
We develop new algorithms for approximating extremal toric Kähler metrics. We focus on an extremal metric on , which is conformal to an Einstein metric (the Chen–LeBrun–Weber metric). We compare our approximation to one given by Bunch and Donaldson and compute various geometric quantities. In particular, we demonstrate a small eigenvalue of the scalar Laplacian of the Einstein metric that gives numerical evidence that the Einstein metric is conformally unstable under Ricci flow.
A lattice Boltzmann model for the study of advection-diffusion-reaction (ADR) problems is proposed. Via multiscale expansion analysis, we derive from the LB model the resulting macroscopic equations. It is shown that a linear equilibrium distribution is sufficient to produce ADR equations within error terms of the order of the Mach number squared. Furthermore, we study spatially varying structures arising from the interaction of advective transport with a cubic autocatalytic reaction-diffusion process under an imposed uniform flow. While advecting all the present species leads to trivial translation of the Turing patterns, differential advection leads to flow induced instability characterized with traveling stripes with a velocity dependent wave vector parallel to the flow direction. Predictions from a linear stability analysis of the model equations are found to be in line with these observations.
In this article the instabilities appearing in a liquid layer are studied numerically by means of the linear stability method. The fluid is confined in an annular pool and is heated from below with a linear decreasing temperature profile from the inner to the outer wall. The top surface is open to the atmosphere and both lateral walls are adiabatic. Using the Rayleigh number as the only control parameter, many kind of bifurcations appear at moderately low Prandtl numbers and depending on the Biot number. Several regions on the Prandtl-Biot plane are identified, their boundaries being formed from competing solutions at codimension-two bifurcation points.
We review recent results on stability of traveling waves in partly parabolicreaction-diffusion systems with stable or marginally stable equilibria. We explain howattention to what are apparently mathematical technicalities has led to theorems thatallow one to convert spectral calculations, which are used in the sciences and engineeringto study stability of a wave, into detailed, theoretically-based information about thebehavior of perturbations of the wave.
Direct numerical simulations have been performed by Mayer, Von Terzi & Fasel (J. Fluid Mech., this issue, vol. 674, 2011, pp. 5–42) to demonstrate that oblique-mode breakdown leads to fully turbulent flow for a Mach 3 flat-plate boundary layer. Since very low level of initial disturbances is required for this transition scenario, oblique-mode breakdown is the most potent mechanism for transition in two-dimensional supersonic boundary layers in low-disturbance environments relevant to flight.
Par une étude de stabilité linéaire nous nous proposons d’analyser un écoulement dans unecavité cylindrique remplie de fluide, dont le fond tourne. Le rayon de la cavité est granddevant la hauteur de fluide. Une étude expérimentale récente [S. Poncet, M.P. Chauve, J.Flow Vis. Image Process 14 (2007) 85–105] a mis en évidence une instabilité aux motifsparticulièrement intéressants. Dans ce travail, nous considérons une modélisation de lasurface libre plane (conditions de symétrie) afin de comparer les résultats expérimentauxet notre étude de stabilité linéaire. Nous discuterons de la pertinence de cettemodélisation, c’est-à-dire de la nécessité de prendre en compte la déformation de lasurface.
This paper is related to the spectral stability of traveling wave solutions of partialdifferential equations. In the first part of the paper we use the Gohberg-Rouche Theoremto prove equality of the algebraic multiplicity of an isolated eigenvalue of an abstractoperator on a Hilbert space, and the algebraic multiplicity of the eigenvalue of thecorresponding Birman-Schwinger type operator pencil. In the second part of the paper weapply this result to discuss three particular classes of problems: the Schrödingeroperator, the operator obtained by linearizing a degenerate system of reaction diffusionequations about a pulse, and a general high order differential operator. We studyrelations between the algebraic multiplicity of an isolated eigenvalue for the respectiveoperators, and the order of the eigenvalue as the zero of the Evans function for thecorresponding first order system.
We discuss how distributed delays arise in biological models and review theliterature on such models. We indicate why it is important to keep thedistributions in a model as general as possible. We then demonstrate, throughthe analysis of a particular example, what kind of information can be gainedwith only minimal information about the exact distribution of delays.In particular we show that a distribution independent stability region maybe obtained in a similar way that delay independent results are obtained forsystems with discrete delays. Further, we show how approximations to theboundary of the stability region of an equilibrium point may be obtained withknowledge of one, two or three moments of the distribution. We compare theapproximations with the true boundary for the case of uniform and gammadistributions and show that the approximations improve as more moments are used.
The aim of this paper is to find estimates of the Green's function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [CITE] in the continuous viscous setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.