A new proof of a product formula for Laguerre polynomials, due originally to Watson, is given. Considering the commutative Banach algebra of radial functions on the Heisenberg groups Hn, n ≧ 2, we observe that Watson's formula holds for z = 1,2, 3, …. Then, applying a complex function theory argument, we establish the validity of this formula for other complex values of z, i.e. for Re z > - 1/2.