Some lactic acid bacteria play an important role in the immune system with potential benefits to the host. However, detailed mechanisms of immune modulation exerted by probiotics remain to be clarified. Since immune response changes in a time-related manner in some cases, we monitored changes in mRNA levels in the spleen of mice during 14 d feeding with Lactobacillus brevis KB290 (KB290). Female BALB/c mice, aged 9 weeks, commenced a diet containing KB290 (3 × 109colony-forming units/g) or starch for a period of 1, 4, 7 or 14 d. Cytotoxic activity of the resulting splenocytes against YAC-1 cells was measured using flow cytometry. The activity was found to be significantly higher in the treated group on days 1 and 7. The highest activity appeared on day 4, but was not statistically significantly different. Gene expression profiles were analysed using DNA microarray. Gene Ontology (GO) terms related to the immune process were significantly enriched in the up-regulated gene set on days 1, 4 and 7, and GO terms related to the cellular process were enriched in the down-regulated gene set on days 4 and 7. Although the up-regulated genes involved in antigen processing and presentation for stimulation of CD8+ cytotoxic T cells were not observed on day 14, some genes involved in T-cell and natural killer cell activation remained up-regulated until day 14. For the majority of the genes tested, RT-PCR analysis was used to verify the results obtained from the DNA microarray analysis. The sequential gene expression profiling reflected changes in cytotoxic activity during KB290 feeding.