Electric water heating loads, in power systems, can be adequately modeled by Markov processes comprising a mix of continuous and discrete states. A physically-based characterization of the dynamic behavior of large aggregates of electric water heating loads is obtained by deriving the forward Kolmogorov equations associated with the individual hybrid-state processes. In addition, by focusing on the discrete part of the state, a Markov renewal viewpoint of the processes is developed. Both viewpoints are used to analyze and predict the transient and steady-state behavior of these loads, of great importance in load management applications.