We develop a theory of semiregenerative phenomena. These may be viewed as a family of linked regenerative phenomena, for which Kingman [6], [7] developed a theory within the framework of quasi-Markov chains. We use a different approach and explore the correspondence between semiregenerative sets and the range of a Markov subordinator with a unit drift (or a Markov renewal process in the discrete-time case). We use techniques based on results from Markov renewal theory.