A Bayesian approach for analyzing layered defense systems is presented. This approach incorporates the dependence of penetration probabilities on the size of attackers going into any layer. A general formula is developed for computing the predictive distribution of the number of attackers surviving any layer as well as the posterior distribution of the penetration probabilities under the a priori assumptions that: (i) the probabilities are dependent and their joint distribution is Dirichlet, and (ii) the probabilities are independent. Positive dependence of the penetration probabilities as well as the number of attackers surviving the different layers is also established.