We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider an extreme renewal process with no-mean heavy-tailed Pareto(II) inter-renewals and shape parameter $\alpha$ where $0\lt\alpha \leq 1$. Two steps are required to derive integral expressions for the analytic probability density functions (pdfs) of the fixed finite time $t$ excess, age, and total life, and require extensive computations. Step 1 creates and solves a Volterra integral equation of the second kind for the limiting pdf of a basic underlying regenerative process defined in the text, which is used for all three fixed finite time $t$ pdfs. Step 2 builds the aforementioned integral expressions based on the limiting pdf in the basic underlying regenerative process. The limiting pdfs of the fixed finite time $t$ pdfs as $t\rightarrow \infty$ do not exist. To reasonably observe the large $t$ pdfs in the extreme renewal process, we approximate them using the limiting pdfs having simple well-known formulas, in a companion renewal process where inter-renewals are right-truncated Pareto(II) variates with finite mean; this does not involve any computations. The distance between the approximating limiting pdfs and the analytic fixed finite time large $t$ pdfs is given by an $L_{1}$ metric taking values in $(0,1)$, where “near $0$” means “close” and “near $1$” means “far”.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.