Understanding population dynamics and impacts on island ecology remain top priorities for the conservation management of seabirds, particularly when attempting species-recovery for island restoration. Identifying suitable nesting habitat is a keystone detail in seabird restoration which can be complicated when predator pressures impact colony productivity and population viability. The surface-nesting Kermadec Petrel Pterodroma neglecta neglecta is dispersed on remote islands through the tropics and subtropics. We examined their breeding ecology on Phillip Island, Norfolk Group in the South Pacific and considered the limitations to re-establishment at their previous breeding location on Lord Howe Island (900 km south-east). On Phillip Island, the petrels were mostly monogamous with nesting locations generally within the vicinity of the previous season’s attempts. Breeding sites were limited to sloping terrain 182–228 m above the shoreline and up to 85 m from the coast in small sub-colonies under low scrubby woodland. Based on observations of 56 pairs and data gleaned from Global Light Sensing devices, we determined that breeding (incubation and provisioning) occurs in all calendar months of the year, with a laying peak in the late austral spring. Breeding success in the first year of study was 25% but improved to 56% once management of Purple Swamphens Porphyrio melanotus was implemented. Successful nests were located at sites with naturally limited egress from cleared or lightly vegetated areas. Prudent management of the petrel population on Phillip Island could aid in the regional recovery of the species and, in the process, assist the island’s restoration by significantly increasing transfers of marine-derived nutrient. Their reintroduction to Lord Howe Island is also possible but will likely rely upon consistent productivity of the Phillip Island population for founding immigrants. Moreover, successful establishment will require adaptive management of selected sites to ensure native avian predators do not overly impact breeding.