In a recent paper by Cantrell et al. [9], two-component KPP systems with competition of Lotka–Volterra type were analyzed and their long-time behaviour largely settled. In particular, the authors established that any constant positive steady state, if unique, is necessarily globally attractive. In the present paper, we give an explicit and biologically very natural example of oscillatory three-component system. Using elementary techniques or pre-established theorems, we show that it has a unique constant positive steady state with two-dimensional unstable manifold, a stable limit cycle, a predator–prey structure near the steady state, periodic wave trains and point-to-periodic rapid travelling waves. Numerically, we also show the existence of pulsating fronts and propagating terraces.