This paper investigates the kinematics of one new isoconstrained parallel manipulator with Schoenflies motion. This new manipulator has four degrees of freedom and two identical limbs, each having the topology of Cylindrical–Revolute–Prismatic–Helical (C–R–P–H). The kinematic equations are derived in closed-form using matrix algebra. The Jacobian matrix is then established and the singularities of the robot are investigated. The reachable workspaces and condition number of the manipulator are further studied. From the kinematic analysis, it can be shown that the manipulator is simple not only for its construction but also for its control. It is hoped that the results of the evaluation of the two-limb parallel mechanism can be useful for possible applications in industry where a pick-and-place motion is required.