Let $E$ be a real uniformly smooth Banach space and let $A$ be a nonlinear $\phi$-strongly quasi-accretive operator with range $R(A)$ and open domain $D(A)$ in $E$. For a given $f\in E$, let $A$ satisfy the evolution system $\rd u(t)/\rd t+Au(t)=f$, $u(0)=u_0$. We establish the strong convergence of the Ishikawa and Mann iterative methods with appropriate error terms recently introduced by Xu to the equilibrium points of this system. Related results deal with the strong convergence of the iterative methods to the fixed points of $\phi$-strong pseudocontractions defined on open subsets of $E$.
AMS 2000 Mathematics subject classification: Primary 47H06; 47H15; 47H17