We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Isaacs and Seitz conjectured that the derived length of a finite solvable group $G$ is bounded by the cardinality of the set of all irreducible character degrees of $G$. We prove that the conjecture holds for $G$ if the degrees of nonlinear monolithic characters of $G$ having the same kernels are distinct. Also, we show that the conjecture is true when $G$ has at most three nonlinear monolithic characters. We give some sufficient conditions for the inequality related to monolithic characters or real-valued irreducible characters of $G$ when the commutator subgroup of $G$ is supersolvable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.