Continuous development of advanced technologies has created increasing demand for rare-earth elements (REE), with global emphasis on identifying new alternate sources to ensure adequate supply. Ore deposits containing physically adsorbed lanthanides are substantially lower grade than other REE deposit types; however, the low mining and processing costs make them economically attractive as sources of REE. To evaluate the commercial potential for the recovery of REEs from ion-adsorption deposits in a systematic manner, a standardized procedure for REE leaching was developed previously. Using this procudure it was found that, regardless of variations in ore origin and REE content, all REE consistently reached peak extraction levels under ambient conditions with fast kinetics. Various techniques to improve the REE extraction through process variations were also investigated: it was found that decreasing the L:S ratio, re-using leachate on fresh ores and counter-current leaching were all capable of increasing REE concentrations in the resultant leachate, albeit at the expense of REE extraction levels. In addition, the water content trapped in the leached material was found to contain significant amounts of REE and residual lixiviant requiring thorough washing of the solid residue.