We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the dosimetric effect of modelling a non-homogeneous couch on patients’ quality assurance (QA) gamma pass rates for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques.
Materials and Methods:
A non-homogeneous treatment couch (TxT 550 TTM, CIVCO, USA) was imaged using the LINAC mounted cone-beam computer tomography (CBCT) system. Modelling this couch in different situations, including incomplete (homogeneous model), correct model and not defined situations in the treatment planning system (TPS), was performed based on the geometrical and material densities data extracted from the CBCT images. Calculated gamma pass rates between TPS dose calculations and the measurements in a phantom for different couch models were obtained and compared at two gamma criteria (2%-2 mm and 3%-3 mm).
Results:
Comparing TPS calculations for the correct modelled couch and the measurements showed high gamma pass rates for both the IMRT and VMAT techniques (96·5 ± 0·9%, 99·2 ± 0·5% for IMRT in 2%-2 mm and 3%-3 mm criteria; 97·5 ± 0·8%, 99·4 ± 0·5% for VMAT). The overall gamma pass rate of the IMRT plan QAs was reduced by about 2% and 3% on average for incomplete and no couch modelling, respectively. These reductions for VMAT techniques were 2·5% and 4·3%, respectively.
Conclusions:
Non-homogeneous couches have different parts with different attenuations, which can be correctly defined using LINAC CBCT. Modelling of treatment couch has a significant effect on patient QA results for VMAT and IMRT plans, especially in radiation fields/subfield transmitting from the couch. We suggest using LINAC CBCTs as an appropriate device for couch modelling in modulated radiotherapy techniques.
This study evaluated the relationship between radiation and Eustachian tube dysfunction, and examined the radiation dose required to induce otitis media with effusion.
Methods:
The function of 36 Eustachian tubes in 18 patients with head and neck cancer were examined sonotubometrically before, during, and 1, 2 and 3 months after, intensity-modulated radiotherapy. Patients with an increase of 5 dB or less in sound pressure level (dB) during swallowing were categorised as being in the dysfunction group. Additionally, radiation dose distributions were assessed in all Eustachian tubes using three dose–volume histogram parameters.
Results:
Twenty-two of 25 normally functioning Eustachian tubes before radiotherapy (88.0 per cent) shifted to the dysfunction group after therapy. All ears that developed otitis media with effusion belonged to the dysfunction group. The radiation dose threshold evaluation revealed that ears with otitis media with effusion received significantly higher doses to the Eustachian tubes.
Conclusion:
The results indicate a relationship between radiation dose and Eustachian tube dysfunction and otitis media with effusion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.