This article proposes a method for incremental data dimensionality reduction in loop closure detection for robotic autonomous navigation. The approach uses dominant eigenvector concept for: (a) spectral description of visual datasets and (b) representation in low dimension. Unlike most other papers on data dimensionality reduction (which is done in batch mode), our method combines a sliding window technique and coordinate transformation to achieve dimensionality reduction in incremental data. Experiments in both simulated and real scenarios were performed and the results are suitable.