The imaginary part of the Clausius-Mossotti factor, Ki, is crucial for quantitative particle/cell manipulation and characterization using travelling wave dielectrophoresis (twDEP) and electrorotation (ER). It can be measured rather easily using twDEP instead of using ER, as numerical calculation of the electric field and complicated devices are not needed for evaluating Ki using twDEP. However, the current single frequency twDEP method works only for particles/cells exhibiting negative dielectrophoresis (DEP), which is in general the case when cells are manipulated in physiological strength buffers with conductivity of order of 1S/m. In order to remove such a restriction, a modified twDEP method is proposed using dual frequency operation here capable of measuring the Ki spectra of particles/cells for the entire range of medium conductivity, irrespectively of whether the particles/cells exhibit positive or negative DEP. The success of the modified method relies on the adequate design of force balance between various forces in a designed micro channel, which was discussed in details. The method was validated, and demonstrated by measuring Ki spectra of three human cancer cells for medium conductivity from 0.01 ~ 1.2S/m. Both the method and the cell result find biomedical and other industrial applications.