We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Statistical inference for Markov processes is commonly based on the maximum likelihood method of estimation and the likelihood ratio criterion for testing hypotheses. Construction of estimators and test statistics by these methods require that a model be chosen in the form of a family of transition density functions. In this paper, asymptotic properties of the maximum likelihood estimator and of the likelihood ratio statistic λn are examined when the model chosen for their construction is incorrect—that is, when no density in the model is a density for the transition probability distribution of the Markov process. It is shown that if and λn are constructed from a ‘regular’ incorrect model, then is consistent and asymptotically normally distributed and the asymptotic null distribution of −2 log λn is that of a linear combination of independent chi-squared random variables. These results are applied to propose measures of the performance of the test based on λn when the statistic is constructed from an incorrect model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.