The purpose of this paper is to apply Biot theory on analyzing honeycomb core to investigate the sound insulation characteristics of honeycomb sandwich panels. At first, the honeycomb core was regarded as a porous material and the sandwich panel is made of layered media. Thus Biot theory developed for fluid saturated porous material is adopted to analyze the waves propagated in honeycomb core. Then the transfer matrix for waves propagated between two ends of each panel is established. The combination of these related matrices can be conducted on evaluating the sound propagation characteristic in the layered media. The comparison of the transmission loss between the available experimental measurements and numerical predictions shows that the present method is reliable. With the present method, the numerical results reveal that the coincident frequency decreases apparently as the thickness of core increases. Therefore, the transmission loss is also increased in the analyzed frequency range. Further, the effect of core density and cell size are also investigated.