We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The interaction of electromagnetic radiation with single-photon resonances in diatomic molecules is discussed in this chapter. The properties of the electric dipole moment of the molecule are determined primarily by the electron cloud that binds the two nuclei together, and these properties can be understood by considering a reference frame fixed to the molecule. However, the response of the molecule must be averaged over all possible orientations of the molecule in the laboratory frame. Using irreducible spherical tensors greatly simplifies the orientation averaging of the molecular response. The Born–Oppenheimer approximation is invoked to initially account for the effect of the electronic, vibrational, and rotational modes of the molecule. Corrections are applied to account for the coupling and interactions of the different modes, including Herman–Wallis effects. Tables of rotational line strengths are presented for singlet, doublet, and triplet electronic transitions. These tables incorporate the use of Hund’s case (a) basis state wavefunctions for increased insight into radiative interactions for levels intermediate between Hund’s cases (a) and (b).
Raman scattering spectroscopy is widely used in analytical chemistry, for structural analysis of materials and molecules and, most importantly for our purposes, as a gas-phase diagnostic technique. Raman scattering is a two-photon scattering process, and the mathematical treatment of Raman scattering is very similar to the mathematical treatment of two-photon absorption. Many of the molecules of interest for quantitative gas-phase spectroscopy are diatomic molecules with non-degenerate 1Σ ground electronic levels, including N2, CO, and H2. In this chapter, the theory of Raman scattering is developed based on Placzek polarizability theory and using irreducible spherical tensor analysis. Herman–Wallis effects are discussed in detail. The chapter concludes with detailed examples of Raman scattering signal calculations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.