Electron microprobe analyses of prehnites from the Way Linggo low-sulphidation epithermal Au-Ag deposit of southern Sumatra, show that the mole fraction of octahedral Fe3+, expressed as Fe3+/(Fe3++AlVI), ranges from 0.0 to ~0.6, the higher values being among the most iron-rich reported for prehnite in a hydrothermal environment. Prehnites from a diabase sill in the Heber geothermal field of California have mole fractions of octahedral Fe3+ ranging from 0.03 to 0.3. The Way Linggo prehnites formed below 220°C, some 20–30°C lower than those at the Heber field; the lower crystallization temperatures perhaps enhanced the opportunity for Fe3+ to substitute in octahedral sites. In both occurrences, prehnite predates late-stage calcite, consistent with the need for waters depositing prehnite to have aCO2 <0.01 moles. At higher CO2 activities the stability field of calcite would swamp the range of aCa2+/aH+ values appropriate for crystallizing prehnite. Consequently, the presence of prehnite in a hydrothermal environment primarily indicates that degassing of the hydrothermal fluid in CO2 occurred prior to deposition.