We consider the zero-resistivity limit for Hasegawa–Wakatani equations in a cylindrical domain when the initial data are Stepanov almost-periodic in the axial direction. First, we prove the existence of a solution to Hasegawa–Wakatani equations with zero resistivity; second, we obtain uniform a priori estimates with respect to resistivity. Such estimates can be obtained in the same way as for our previous results; therefore, the most important contribution of this paper is the proof of the existence of a local-in-time solution to Hasegawa–Wakatani equations with zero resistivity. We apply the theory of Bohr–Fourier series of Stepanov almost-periodic functions to such a proof.