For homogeneous, two-dimensional random field ξ(t), t ∈ R2 we develop the ‘half' spectral theory sufficient to rigorously define its envelope η (t). We then specialise to the case of ξ Gaussian, which implies η is Rayleigh, and consider the mean value of a certain characteristic of the sets {t:η(t) ≧ u} (u ≧ 0). From this we deduce some qualitative information about the sample path behaviour of the Rayleigh field η .