Frege’s Grundgesetze was one of the 19th century forerunners to contemporary set theory which was plagued by the Russell paradox. In recent years, it has been shown that subsystems of the Grundgesetze formed by restricting the comprehension schema are consistent. One aim of this paper is to ascertain how much set theory can be developed within these consistent fragments of the Grundgesetze, and our main theorem (Theorem 2.9) shows that there is a model of a fragment of the Grundgesetze which defines a model of all the axioms of Zermelo–Fraenkel set theory with the exception of the power set axiom. The proof of this result appeals to Gödel’s constructible universe of sets and to Kripke and Platek’s idea of the projectum, as well as to a weak version of uniformization (which does not involve knowledge of Jensen’s fine structure theory). The axioms of the Grundgesetze are examples of abstraction principles, and the other primary aim of this paper is to articulate a sufficient condition for the consistency of abstraction principles with limited amounts of comprehension (Theorem 3.5). As an application, we resolve an analogue of the joint consistency problem in the predicative setting.