For $x\in (a_{j-1}, a_j)\ (j=1,\ldots, p+1;\ a_0\!:=-\infty, \ a_{p+1} \!:=\infty)$ the mapping $T_j\!: w=x-\sum ^p_{l=1}\lambda _l/(x-a_l)\ (\lambda _l$>$0, \ a_l\in$R) is onto R. It was shown by G. Boole in the 1850's that $\sum ^{p+1} _{j=1}[(\partial w/\partial x) ^{-1}] _{x=T^{-1}_j(w)}=1.$ We give an n-dimensional analogue of this result. The proof makes use of the Griffiths–Harris residue theorem from algebraic geometry.