The emergence of annual species depends on the number of seeds present and the biotic and abiotic conditions directly surrounding those seeds (the microsite). A field experiment was conducted to study the relative importance of seed presence vs. microsite conditions in determining the emergence of four annual species. Green foxtail, wild mustard, wild oat, and canola were seeded at 200, 400, and 1,200 seeds m−2 in separate plots in a coarse, loamy, mixed Typic Haplocryoll and a fine, mixed Typic Haplocryoll soil. Five microsite modification treatments (control, irrigation, soil compaction, soil compaction plus irrigation, and no crop) were applied to all weed seed density treatments for each weed species. All plots were seeded to spring wheat. Irrigation or soil compaction increased percent emergence of wild oat. Green foxtail emergence tended to increase with soil compaction in 2001 but not in 2002. Wild mustard and canola emergence were largely unaffected by microsite modification treatments. Weed emergence increased with increasing seed density for all species, but the proportion of the total number of seeds emerging decreased with increasing seed density for all species. We suggest that the emergence of the four weed species in this experiment was both seed and microsite limited. Increasing the number of seeds in the soil increased the probability of seeds landing within an appropriate microsite. For these four species, therefore, weed spread and weed patch formation may be determined both by seed production and dispersal and by variability in soil microsite conditions. Results suggest that weed management practices should limit seed dispersal of all species and discourage weed emergence of hard-to-control species during critical establishment periods.