Generation of hot electrons at grazing incidence of a subpicosecond relativistic-intense laser pulse onto a plane solid target is analyzed for the parameters of petawatt class laser systems. We study preplasma formation on the surface of solid aluminum targets produced by laser prepulses with a different time structure. For modeling of the preplasma dynamics, we use a wide-range two-temperature hydrodynamic model. As a result of simulations, the preplasma expansion under the action of the laser prepulse and the plasma density profiles for different contrast ratios of the nanosecond pedestal are found. These density profiles are used as the initial density distributions in three-dimensional particle-in-cell simulations of electron acceleration by the main P-polarized laser pulse. Results of modeling demonstrate a substantial increase of the characteristic energy and number of accelerated electrons for the grazing incidence of a subpicosecond intense laser pulse in comparison with the ponderomotive scaling of laser–target interaction.