We report investigations on the fabrication and characterization of graphene nanoribbon (GNR) field-effect transistors. Graphene layers are obtained from the thermal decomposition of a Si-face 4H-SiC substrate. To achieve high dynamic performance, a structure with an array of GNR connected in parallel was fabricated by e-beam lithography. The best intrinsic current gain cut-off frequency of 60 GHz and maximum oscillation frequency of 28 GHz were achieved. This study demonstrates the exciting potential of GNR in high-frequency electronics.