Glycaemic responses to foods reflect the balance between glucose loading into, and its clearance from, the blood. Current in vitro methods for glycaemic analysis do not take into account the key role of glucose disposal. The present study aimed to develop a food intake-sensitive method for measuring the glycaemic impact of food quantities usually consumed, as the difference between release of glucose equivalents (GGE) from food during in vitro digestion and a corresponding estimate of clearance of them from the blood. Five foods – white bread, fruit bread, muesli bar, mashed potato and chickpeas – were consumed on three occasions by twenty volunteers to provide blood glucose response (BGR) curves. GGE release during in vitro digestion of the foods was also plotted. Glucose disposal rates estimated from downward slopes of the BGR curves allowed GGE dose-dependent cumulative glucose disposal to be calculated. By subtracting cumulative glucose disposal from cumulative in vitro GGE release, accuracy in predicting the in vivo glycaemic effect from in vitro GGE values was greatly improved. GGEin vivo = 0·99GGEin vitro+0·75 (R2 0·88). Furthermore, the difference between the curves of cumulative GGE release and disposal closely mimicked in vivo incremental BGR curves. We conclude that valid measurement of the glycaemic impact of foods may be obtained in vitro, and expressed as grams of glucose equivalents per food quantity, by taking account not only of GGE release from food during in vitro digestion, but also of blood glucose clearance in response to the food quantity.