We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients who awake from sevoflurane anaesthesia with symptoms of agitation may have some underlying functional substrate that is sensitive to the low concentrations of anaesthetic encountered during emergence. One candidate for such a substrate could be neurocircuitry implied in the pathophysiology of both agitation and movement disorders with hyperactivity. We postulated that hyperactive animals would show a further increase in activity in the presence of low concentrations of volatile anaesthetics, such as sevoflurane.
Methods
To confirm our hypothesis, we examined the effects of two subanaesthetic concentrations of sevoflurane, isoflurane and halothane (0.1 and 0.2 MAC (minimum alveolar concentration)) on spontaneous activity in N-methyl-d-aspartate receptor GluRε1 subunit knockout mice exhibiting locomotor hyperactivity in a novel environment and compared these results with those for wild-type controls. We also compared the effects of anaesthetic concentrations of sevoflurane (1.2 MAC) on mice activity during postanaesthesia recovery.
Results
Out of the three anaesthetics used, only sevoflurane administered at 0.1 MAC caused a significantly different response between the two experimental groups. Exposure to this subanaesthetic concentration of sevoflurane reduced the activity of wild-type mice, whereas mutant animals showed a further increase in hyperactivity. The effects of 1.2 MAC sevoflurane anaesthesia on mice activity during postanaesthesia recovery also differed significantly between the two genotypes. Exposure to anaesthetic concentrations of sevoflurane had a sedative effect on wild-type mice, whereas mutant mice preserved their high levels of activity upon emergence from the anaesthesia.
Conclusions
The presence of an inherent anomaly in mutant mice that becomes more manifest during exposure to 0.1 MAC sevoflurane and is still present after the emergence from sevoflurane anaesthesia suggests the presence of and necessitates a search for some putative substrate that may, by analogy, underlie emergence agitation in the clinical setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.