We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Intracranial aneurysm (IA) is an expansion of the weakened arterial wall that is often asymptomatic until rupture, resulting in subarachnoid hemorrhage. Here we describe the high prevalence of familial IA in a cohort of Newfoundland ancestry. We began to investigate the genetic etiology of IA in affected family members, as the inheritance of this disease is poorly understood.
Methods:
Whole exome sequencing was completed for a cohort of 12 affected individuals from two multiplex families with a strong family history of IA. A filtering strategy was implemented to identify rare, shared variants. Filtered variants were prioritized based on validation by Sanger sequencing and segregation within the families.
Results:
In family R1352, six variants passed filtering; while in family R1256, 68 variants remained, so further filtering was pursued. Following validation by Sanger sequencing, top candidates were investigated in a set of population controls, namely, C4orf6 c.A1G (p.M1V) and SPDYE4c.C103T (p.P35S). Neither was detected in 100 Newfoundland control samples.
Conclusion:
Rare and potentially deleterious variants were identified in both families, though incomplete segregation was identified for all filtered variants. Alternate methods of variant prioritization and broader considerations regarding the interplay of genetic and environmental factors are necessary in future studies of this disease.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.