We study behaviours of the ‘equianharmonic’ parameter of the Grothendieck–Teichmüller group introduced by Lochak and Schneps. Using geometric construction of a certain one-parameter family of quartics, we realize the Galois action on the fundamental group of a punctured Mordell elliptic curve in the standard Galois action on a specific subgroup of the braid group . A consequence is to represent a matrix specialization of the ‘equianharmonic’ parameter in terms of special values of the adelic beta function introduced and studied by Anderson and Ihara.