Blocking GABAA-receptor-mediated inhibition reduces the selectivity of striate cortical neurons for the orientation of a light bar primarily by reducing the selectivity of their onset transient (initial 200 ms) response. Blocking GABAB-receptor-mediated inhibition with phaclofen, however, is not reported to reduce the orientation selectivity of these neurons when it is measured with a light bar. We hypothesized that blocking GABAB-receptor-mediated inhibition would instead affect the orientation selectivity of cortical neurons by reducing the selectivity of their sustained response to a prolonged stimulus. To test this hypothesis, we stimulated 21 striate cortical neurons with drifting sine-wave gratings and measured their orientation selectivity before, during, and after iontophoretic injection of 2-hydroxy-saclofen (2-OH-S), a selective GABAB-receptor antagonist. 2-OH-S reduced the orientation selectivity of six of eight simple cells by an average of 28.8 (± 13.2)% and reduced the orientation selectivity of eight of 13 complex cells by an average of 32.3 (± 27.4)%. As predicted, 2-OH-S reduced the orientation selectivity of the neurons' sustained response, but did not reduce the orientation selectivity of their onset transient response. 2-OH-S also increased the length of spike “bursts” (two or more spikes with interspike intervals ≤ 8 ms) and eliminated the orientation selectivity of these bursts for six cells. These results are the first demonstration of a functional role for GABAB receptors in visual cortex and support the hypothesis that two GABA-mediated inhibitory mechanisms, one fast and the other slow, operate within the striate cortex to shape the response properties of individual neurons.